Углежоги

Объявление

Мы готовы в меру своих познаний отвечать на Ваши вопросы по технологиям, связанным с древесным углем.

Обратите внимание: Здесь мы обсуждаем только технологии. Все объявления о купле-продаже удаляются!

Все объявления насчет купли-продажи угля можно помещать на форуме

"торговая площадка древесного угля"

Администраторы форума: Boris (Киев), Олег Викторович (Пермь)

Счетчик визитов на Форум Установлен 18 января 2012 года : счетчик посещений

Пожалуйста, освежайте в памяти правила. (Кнопка Правила в верхнем меню)

Информация о пользователе

Привет, Гость! Войдите или зарегистрируйтесь.


Вы здесь » Углежоги » Курилка Форума » Как в Баден-Вюртемберге развивают биоэкономику


Как в Баден-Вюртемберге развивают биоэкономику

Сообщений 1 страница 3 из 3

1

"Власти Баден-Вюртемберга выбрали биоэкономику как одно из главных направлений развития. В 2012-2013 годах разработали ее стратегию, согласно которой десять исследовательских направлений объединены в три больших области: биогаз, лигноцеллюлоза, микроводоросли. Пока большинство проектов биоэкономики находятся на стадии научного исследования и пилотных производств, но есть и успешные рыночные примеры.

Баден-Вюртемберг считает себя лидером в биоэкономике, поэтому второй раз проводит у себя Международный конгресс по биоэкономике. Мероприятие состоится 12-13 сентября 2017 года в Штутгарте. В преддверии конгресса правительство региона пригласило группу журналистов из разных стран Европы, чтобы познакомить их с успехами в области биоэкономики.

Уголь и пластик из биомассы

По понятным причинам биологические отходы невозможно транспортировать на большие расстояния как нефть и газ, поэтому важно создать инфраструктуру для ее переработки на местах. К примеру, солому и другие отходы сельского хозяйства лучше перерабатывать прямо на полях с помощью мини-заводов. Технологии для этого создают в исследовательском центре биоэкономики при Гогенгеймском университете.

Этот вуз основан в 1818 году с уклоном в сельское хозяйство, которое чрезвычайно развито в Баден-Вюртемберге по сей день. Достаточно проехаться на междугородном автобусе, чтобы увидеть многочисленные поля злаков, овощей, виноградники. Фермеры или дачники используют каждый клочок земли, свободный от леса. При таких условиях технологии переработки биомассы здесь востребованы. Особенно если фермерам предложить компактные, экологически чистые устройства, желательно передвижные. А главное, чтобы они могли зарабатывать на этом.

«Самый эффективный способ переработать биомассу — съесть ее. Но мы пытаемся создать альтернативу», — пошутила заведующая кафедрой в Гогенгеймском университете Андрея Крузе. Делая презентацию для группы международных журналистов, профессор старалась говорить как можно более понятно, но избежать научной терминологии не удалось. Все-таки речь шла об очень сложных областях органической химии. Так что пришлось акулам пера для начала выучить термин «гидротермальная карбонизация». Это ускоренный способ получения угля из органики. Его изобрел в 1913 году немецкий ученый Фридрих Бергиус. В 1931 году он получил за свои работы, в том числе за это открытие, Нобелевскую премию. При помощи гидротермальной карбонизации делают жидкое биотопливо для автомобилей и самолетов. Сначала биомассу обезвоживают, затем сжигают при высокой температуре и давлении, получая кокс или древесный уголь, который называют также биоуглем, чтобы подчеркнуть отличие от ископаемого аналога. Из биоугля делают активированный уголь, широко используемый в промышленности, фармацевтике, в качестве фильтров для воды. Благодаря особо пористой структуре, активированный уголь рассматривают как хранилище водорода.
В Гогенгеймском университете группа ученых под руководством Крузе совершенствует процесс гидротермальной карбонизации, стараясь сделать его более эффективным, быстрым и недорогим. Изменяя параметры сжигания, ученые получают биоуголь с разными свойствами, ищут новые области его применения. Перспективен биоуголь как удобрение на полях, если его обогатить фосфором. Он также может сорбировать излишки азота из почвы или служить фитотоксином.

http://s7.uploads.ru/mnhay.png

Из биомассы можно получать полимеры — особые молекулы, из которых делают разные пластики. В лаборатории Крузе в качестве сырья для полимеров приспособили корни цикория. Цикорий выращивают в Германии как салатное растение, а корни его идут в отходы. В год 800 тысяч тонн корней цикория попадает в компост или на заводы по производству биогаза. Ученые же предлагают более элегантное решение: получать из них гидроксиметилфурфурол. Из этого соединения делают биополимеры: полиэстер, нейлон, пластик для бутылок. Пластик получается такой же как из нефтепродуктов, за исключением того, что он немного легче разлагается под действием ультрафиолета.

Из-за этой особенности он пока не нашел широкого распространения на рынке. Одна из лабораторий Крузе представляет собой большой ангар, где установлены несколько печей для экспериментов с биомассой. Аспиранты показали посетителям образцы биоугля, рассказали об их свойствах, объяснили тонкости технологии.

«Чтобы создать работающую технологию, нужно исследовать каждый этап. Как скажется на конечном продукте расширение объемов производства? В любом случае, конечный продукт должен быть привлекателен для рынка», — полагает Крузе. Как химик-технолог, она привыкла иметь дело с огромными объемами, но в случае с биомассой выгодным оказывается работать и с малыми объемами. По словам профессора, «в этом состоит изюминка биоэкономики».

Партнером проекта выступает немецкая компания Ava. Ей принадлежит половина прав на интеллектуальную собственность, созданную в проектах Крузе. Когда технология дойдет до рынка, внакладе не будут ни университет, ни инвестор".

отсюда

0

2

Удивительный термопластик

Химики давно мечтают заменить нефть в качестве источника полимеров, и биомасса подходит для этого как нельзя лучше. Вопрос только в том, как извлечь из нее нужные соединения. Ответ нашли пару десятков лет назад немецкие химики из Фраунгоферовского института химической технологии. Их внимание привлек лигнин — соединение, получаемое из целлюлозы. Ученые придумали, как сделать из лигнина термопласт — пластик, из которого можно отлить любую форму. Его еще называют жидким деревом, намекая на то, что источником лигнина служит древесина. На рынке жидкое дерево известно под брендом «арбоформ».

«Это биоразлагаемый и легко перерабатываемый материал», — рассказал директор исследований и развития фирмы Tecnaro доктор Ларс Циглер. Tecnaro производит из термопластов множество разнообразной продукции. Ей полна штаб-квартира фирмы в Ильсфельде: вешалки, игрушки, детали для наушников, посуда, кашпо, расчески, даже каблуки для обуви. При входе установлен стеллаж причудливой формы, отпечатанный на 3D-принтере. Все это производят на заводе в Карлсруэ, запущенном в 2000 году. С тех пор фирма разработала еще два термопласта из лигнина — арбобленд и арбофил. Из них делают пленку, пластиковую посуду, контейнеры для еды, детали техники, включая воздушную вентиляцию для автомобильных тормозов.

http://s4.uploads.ru/3rxmQ.png

Tecnaro выпускает 10 тысяч тонн термопластов в год. Немало, учитывая, что сырье поступает главным образом из Скандинавских стран и Северной Америки, ведь собственная древесная промышленность Германии производит мало отходов.

Дерево наносит ответный удар

Сложно представить себе более ценный и экологичный материал, чем дерево. Оно растет само и само разлагается, древесные ресурсы постоянно возобновляются, а свойства древесины поражают разнообразием.

Дерево используют в строительстве, из него делают бумагу, мебель и много других полезных вещей. Все же нынешнее древесное производство производит слишком много отходов. А хотелось бы их свести к минимуму.

Эту задачу решают во Фрайбургском университете на факультете природных ресурсов. «Дерево имеет замечательную структуру, в каком-то смысле оно представляет собой композит. К тому же дерево — самовосстанавливающийся со временем материал. Мы хотим понять дерево на молекулярном уровне», — рассказала профессор Мари-Пьер Лабори. Она восхищается свойствами дерева и пытается пробудить интерес к этому материалу даже у журналистов. Вместе с коллегами Лабори придумывает, как наиболее эффективно извлечь из древесины лигнин, целлюлозу и полезные соединения, чтобы затем сделать из них новые материалы.

Профессор Лабори показала первым делом пластиковую банку, заполненную белой жидкостью — это наноцеллюлоза. Она состоит из мельчайших волокон целлюлозы, которые придают материалу удивительные свойства. Наноцеллюлозу открыли с десяток лет назад, но на публикацию о ней не обратили внимания, пока во Франции не сделали из наноцеллюлозы строительный материал для крыш. Теперь наноцеллюлозу считают очень перспективной благодаря пластичности и прочности. Из нее можно делать гибкие экраны, броню, а также использовать как конструкционный материал.

Широкому применению наноцеллюлозы препятствует ее дороговизна, поэтому ученые пытаются придумать наилучшие технологии для ее получения. Профессор Лабори уверена: «Наступает новая эра для лесной промышленности». Что касается безопасности наноцеллюлозы, то пока ее вред для организма не обнаружен.

В ее лаборатории ищут более эффективные способы извлечения из древесины лигнина и танинов — тоже полезных полимеров, содержащихся в коре дерева. Танины используют для дубления кожи и производства лекарств. А теперь ученые пытаются приспособить их для синтеза пластиков, в том числе огнестойких.

Для развития этих проектов во Фрайбургском университете организовали стартапы, поскольку ученые обязаны иметь коммерческих партнеров, чтобы получить дополнительное финансирование.

отсюда

0

3

Заменитель нефти

Получить топливо из биомассы не проблема уже давно. Отлично. А как насчет коммерческих объемов, инфраструктуры, чтобы этим продуктом было удобно пользоваться? Кто-то должен заниматься и этими важными для экономики вещами. В Баден-Вюртемберге это понимают и строят пилотные заводы разной мощности. Один из таких заводов — Bioliq — находится на территории Технологического университета Карлсруэ. В 2013 году построили его первую очередь, где из биомассы производят готовое к транспортировке плотное жидкое сырье. Биомассу смешивают с песком и разлагают путем пиролиза на сажу и жидкость, которая представляет собой концентрированное топливо. Затем на второй очереди завода из концентрата делают биотопливо. Его наливают в двигатель автомобиля также как бензин, перерабатывают на керосин, дизель, авиационное топливо. «Обычно такие технологии выходят на рынок лет через пять, в данном случае срок увеличивается, потому что нужно протестировать продукты и убедиться, что они проходят по качеству и стандартам», — рассказал координатор научной программы завода Bioliq Николас Дахмен. Он провел журналистов по нескольким этажам завода, подробно объясняя каждую стадию производства.

Строительство завода Bioliq обошлось в 64 млн евро, четверть этой суммы поступила от коммерческих партнеров, остальное — от Министерства сельского хозяйства. По словам Дахмен, из шести тонн сена получается одна тонна биотоплива. Пока завод работает не постоянно, а сеансами, вырабатывая биотопливо для научных и испытательных целей. Если опытное производство признают успешным, то его можно будет масштабировать. Если нет, то получаемое сырье всегда можно будет пустить на производство биогаза.

В процессе сжигания биомассы остается пепел, обогащенный полезными веществами, в том числе фосфором, а он как мы знаем, служит хорошим удобрением для почвы. Так что все исходное сырье и побочные продукты, получаемые на заводе, идут в дело.

ещё чуть больше инфы и фоток - по ссылке.

http://s7.uploads.ru/uaeLx.png

0


Вы здесь » Углежоги » Курилка Форума » Как в Баден-Вюртемберге развивают биоэкономику


ФотоВидеоСоздать бесплатный форумПомощь